
Vol.:(0123456789)

Journal of Geovisualization and Spatial Analysis            (2024) 8:19  
https://doi.org/10.1007/s41651-024-00181-5

Enhancing Flood Risk Analysis in Harris County: Integrating Flood 
Susceptibility and Social Vulnerability Mapping

Hemal Dey1,2 · Wanyun Shao1,2  · Md Munjurul Haque1,2 · Matthew VanDyke2,3

Accepted: 5 May 2024 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract
Due to climate change, the frequency and intensity of floods have dramatically increased worldwide. The innate social 
inequality has been exposed and even exacerbated by increasing flooding. It is imperative to assess flood risk in a compre-
hensive manner, accounting for both physical exposure and social vulnerability. Harris County in Texas, U.S., is selected as 
the study area as it has experienced a few devastating floods in recent history, with Hurricane Harvey (2017) being the most 
impactful. First, this study generates a flood susceptibility map (FSM) by applying a Random Forest (RF) model with 500 
flood inventory points and 12 flood conditioning factors. Then, it generates a social vulnerability map (SoVM) by apply-
ing Principal Component Analysis (PCA) with ten social variables at the census tract level. Finally, it combines FSM with 
SoVM to produce a flood risk map (FRM) of Harris County. The findings of this study demonstrate that 9.06% of the area of 
Harris County has high flood susceptibility and 1.45% of the area has a very high social vulnerability. Combining both flood 
susceptibility and social vulnerability, this study reveals that 5.59% of the total area has a very high risk for flooding. This 
study further compares the FRM with the Federal Emergency Management Agency’s (FEMA) 100-year floodplain map and 
notes major differences. The comparison reveals that 76.7% of very high and 81.8% of high-risk areas in FRM are underesti-
mated by the FEMA 100-year floodplain. This study produces a comprehensive FRM, highlighting areas where flooding can 
exacerbate social inequality and cause higher economic costs. FEMA’s 100-year floodplain map underestimates a significant 
portion of high-risk areas suggesting that current zoning and development policy may fail to consider flood risks adequately.
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Introduction

The frequency and intensity of flood hazards have increased 
due to climate change particularly in the coastal regions that 
are susceptible to rising sea levels and population growth 
(Wong et al. 2014). The increasing frequency and sever-
ity of floods demand a more comprehensive approach to 
understanding and mitigating flood risk. Traditional flood 
risk assessments typically prioritize meteorological and 
hydrological factors, such as rainfall intensity, topography, 

and river discharge, as key determinants (Park and Lee 
2019). The significance of these factors cannot be denied, 
yet they only partially explain the complex and dynamic 
relations to flood risk (Eiser et al. 2012). A wider range of 
factors, such as flood susceptibility and social vulnerability, 
must be considered to reach a more comprehensive under-
standing (Haque et al. 2023). Risk decision-makers (e.g., 
emergency managers and urban planners) and the public 
need relevant FRM products that effectively and accurately 
communicate flood risks in support of risk mitigation and 
reduction. Research has shown that different types of risk 
decision-makers have different information needs, often 
based on their technical knowledge and expertise (Van-
Dyke et al. 2021), and the public may often be disengaged 
from water-related risks unless the risks are particularly 
salient, for example, unless a flood crisis is imminent or 
occurring (VanDyke and King 2018). Therefore, to maxi-
mize the opportunity for relevant audiences to engage FRM 
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products, information should strive for a comprehensive, 
precise assessment of flood risks.

The complex interaction between physical exposure to 
floods and social vulnerability justifies a comprehensive 
assessment that incorporates both aspects. Research has 
extensively explored each dimension separately. The physi-
cal dimension of flood hazards, particularly flood suscep-
tibility, has been the focus of a large body of work. Flood 
susceptibility assessment estimates the likelihood and sever-
ity of floods and enables us to identify the spatial distribu-
tion of flood susceptibility by using past flood events data 
(flood inventory map) and flood conditioning factors (Rah-
man et al. 2019). The flood inventory map is a key element 
of flood susceptibility assessment that contains historical 
records of past floods (Merz et al. 2007). The past flood loca-
tions in the flood inventory map serve as a dependent vari-
able. Additionally, topographical, geological, climatologi-
cal, and hydrological factors of flooding, such as elevation, 
slope, precipitation, soil texture, and distance from rivers 
play a vital role during flood susceptibility assessment as 
independent variables (Das 2020; Kia et al. 2012; Sarkar 
and Mondal 2020). The primary product of flood suscepti-
bility assessment is FSM, considered a crucial tool in flood 
mitigation planning and implementing effective measures to 
develop sustainable urban environments in less flood-prone 
areas (Seydi et al. 2022; Youssef et al. 2022). Meanwhile, 
the concept of "social vulnerability" describes a person’s 
or a community’s natural vulnerability to environmental 
disruptions (Cutter et al. 2003), while social vulnerability 
map (SoVM) is a choropleth map that depicts the spatial 
distribution of social vulnerability. It also plays an important 
role in assessing community preparedness, response, and 
recovery capacities at different stages of a natural disaster 
by identifying highly vulnerable regions and communities 
prone to adverse impacts (Frigerio and De Amicis 2016). 
It enables policymakers to effectively target interventions, 
distribute resources, and build the resilience of these com-
munities by analyzing social vulnerability alongside flood 
susceptibility. Thus, the integration of both flood susceptibil-
ity assessment and social vulnerability assessment is crucial 
within the framework of flood risk assessment. This research 
initiative aims to combine flood susceptibility and social 
vulnerability to offer a comprehensive evaluation of flood 
risk, using Harris County in Texas, U.S. as a case study for 
illustration of our approach.

This study reflects a shift towards integrating diverse 
methodologies to understand and manage flood risks effec-
tively. By combining historical data analysis, geospatial tech-
nologies, and advanced modeling techniques like Machine 
Learning (ML) algorithms, the study aims to enhance our 
capacity for predicting and mitigating flood impacts in vari-
ous regions. Specifically, the innovation of this study lies 
in its comprehensive flood risk assessment approach by 

integrating flood susceptibility and social vulnerability into 
a coherent framework. Traditionally, flood risk assessments 
have largely focused on physical features alone, neglecting 
the social dimension that would either exacerbate or mitigate 
the impact of flooding. This study takes flood risk assess-
ment to a higher level by employing a bivariate mapping 
technique that leverages both an FSM, generated using the 
RF model, and an SoVM, derived through the PCA tech-
nique. By combining these two advanced methodologies, 
the study offers a comprehensive assessment of flood risk, 
which is the outcome of both the physical susceptibility to 
flooding and the social capacity/incapacity to respond to 
flooding. This innovative approach not only increases the 
comprehensiveness of flood risk assessments but also pro-
vides valuable insights for targeted mitigation and adapta-
tion strategies, helping communities build resilience against 
increasing flood risks. By synthesizing these datasets and 
methodologies, the study provides a holistic view of flood 
risk, highlighting the importance of considering both physi-
cal and social factors in flood risk assessment and manage-
ment. Furthermore, this study discusses the comparison 
between FRM and FEMA’s 100-year floodplain map.

Literature review

Over the past few years, Geographic Information Sys-
tem (GIS) and remote sensing (RS) techniques have been 
increasingly used to assess the physical dimension of natural 
hazards (Kadri and Nasrallah 2023; Qin et al. 2024; Tabas-
sum et al. 2023) due to geospatial technological advance-
ments, and the availability of real-time remotely sensed data 
(Hasan et al. 2023; Joyce et al. 2009). It provides a conveni-
ent platform to analyze, manipulate, and visualize potential 
hazard-related remotely sensed data very quickly and effi-
ciently (Sarkar and Mondal 2020; Rahmati et al. 2016). The 
combination of GIS and RS has become a vital tool to depict 
flood susceptibility zones and associated flood damage (Kia 
et al. 2012). Especially, satellite RS-based flood inundation 
mapping enables us to gather historical flood data through 
image classification techniques. Many GIS and RS-based 
methods have already been developed to map flood suscep-
tibility zones, such as bivariate statistical analysis (BSA), 
multi-criteria decision-making (MCDM), and ML models 
(Andaryani et al. 2021; Das 2020; Farhadi and Najafzadeh 
2021; Islam et al. 2021; Lee et al. 2017; Rahman et al. 2019; 
Rahmati et al. 2016; Samanta et al. 2018; Sarkar and Mon-
dal 2020). All these methods use GIS and RS techniques, 
incorporating geospatial analysis to predict future hazards 
by considering multiple flood conditioning factors. However, 
BSA and MCDM methods have some performance limita-
tions. For instance, BSA often oversimplifies the interac-
tion between flood points and flood conditioning factors, 
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neglects non-flood points, and relies only on sum weight or 
class weights (Dey et al. 2024). MCDM methods are based 
on expert opinions and, as a result, can introduce bias and 
variability in predictions (Shahabi et al. 2020). Recently, ML 
has emerged as a cutting-edge technology by overcoming 
these issues and providing higher accuracies for predicting 
various natural hazards (Nachappa et al. 2020).

Researchers increasingly utilize ML models to handle 
spatial data (Du et al. 2020; Sotiropoulou and Vavatsikos 
2023), generate map images (Courtial et al. 2022), and 
achieve highly accurate and time-efficient RS image clas-
sification results (Dou et al. 2024). This trend of RS image 
classification using ML models is particularly notable in the 
applications of land use land cover (LULC) classifications 
and fine mapping using time series of multispectral (Dou 
et al. 2021) and hyperspectral images (Dou and Zeng 2020). 
Another important application of ML models using RS 
images is assessing a variety of natural hazards (Nachappa 
et al. 2020). ML models have become increasingly popular 
for flood hazard prediction as they efficiently use historical 
data to account for the characteristics of flood nonlinearity 
without requiring knowledge of physical processes (Mosavi 
et al. 2018). Additionally, ML models demonstrate better 
performance and cost-effectiveness in flood susceptibility 
mapping compared to other traditional methods (Rahmati 
et al. 2020). To date, researchers have adopted a variety of 
advanced ML models in flood susceptibility assessment. 
Some common ML models include CART (classification 
and regression trees) (Rahman et al. 2021), Logistic Regres-
sion (LR) (Rahman et al. 2019), Decision Tree (DT) (Seydi 
et al. 2022), Support Vector Machine (SVM) (Tehrany et al. 
2015), Random Forest (RF) (Lee et al. 2017), Extreme Gra-
dient Boosting (XGBoost) (Abedi et al. 2022), Artificial 
Neural Network (ANN) (Andaryani et al. 2021) and Con-
volutional Neural Network (CNN) (Youssef et al. 2022).

Compared to other ML models, the RF model has gained 
popularity in remotely sensed image classification because 
of its high predictive accuracy, ability to deal with missing 
values, and capability to detect outliers (Amare et al. 2021; 
Farhadi and Najafzadeh 2021). Due to its reliable perfor-
mance and advantages, many researchers utilized RF models 
in assessing a variety of natural hazards such as landslide 
susceptibility (Merghadi et al. 2020), land subsidence and 
sinkhole susceptibility (Elmahdy et al. 2022), groundwater 
potentiality (Thanh et al. 2022), gully erosion susceptibility 
(Amare et al. 2021), seismic vulnerability (Han et al. 2020), 
and wildfire susceptibility (Iban and Sekertekin 2022). RF is 
also widely recognized as a leading non-parametric ensem-
ble learning technique and has consistently achieved the 
highest accuracy for flood susceptibility mapping because 
of its ability to detect nonlinear trends between flooding 
and flood conditioning factors (Abedi et al. 2022; Dey et al. 
2024; Elmahdy et al. 2022; Nachappa et al. 2020). Thus, this 

study employed the RF algorithm to conduct flood suscepti-
bility mapping in Harris County by utilizing flood inventory 
points and 12 flood conditioning factors namely elevation, 
slope, aspect, curvature, topographic wetness index (TWI), 
stream power index (SPI), precipitation, LULC, distance 
to rivers, normalized difference vegetation index (NDVI), 
drainage density, and soil texture.

Meanwhile, social vulnerability assessment also requires 
several underlying factors of vulnerability. In addition to 
the presence of vulnerable groups like the elderly, young 
women, children, or people with disabilities, the innate 
social vulnerability is also affected by factors like income, 
access to resources, education, and healthcare (Rufat et al. 
2015). Thus, it is essential to consider economic and edu-
cational factors along with demographic information to 
extract a more comprehensive understanding of social vul-
nerability. PCA is a commonly applied method in assessing 
social vulnerability by condensing vital socio-economic 
information into fewer factors and combining them into a 
composite index known as the social vulnerability index 
(SoVI) (Cutter et al. 2003). Many researchers have assessed 
social vulnerability by calculating the geographic variations 
of SoVI at various geographic scales by condensing multiple 
socio-economic indicators such as population density, age, 
income, education, race, and so on (Cutter et al. 2003; Dey 
et al. 2023; Khajehei et al. 2020; Shao et al. 2020). Thus, 
this study adopted the PCA method to prepare the SoVM 
of Harris County by utilizing ten socioeconomic variables.

Despite many studies having been conducted on flood 
susceptibility and social vulnerability assessment separately, 
there however has been limited research that integrates them 
to prepare a comprehensive flood risk map. Therefore, this 
study aims to address this research gap by assessing flood 
risk through the integration of flood susceptibility and social 
vulnerability assessments. Through this comprehensive 
approach, this study will offer valuable insights for develop-
ing effective flood risk mitigation strategies and enhancing 
community resilience in flood-prone areas.

Data and Methods

Study area

This study selects Harris County (corresponding to Houston 
throughout this paper) in the U.S. Gulf Coast to demonstrate 
our analytical strategy. It is located on the upper Gulf Coast 
in the southeast of Texas (Fig. 1). It covers an area of 1,778 
square miles, out of which most of the region is typically a 
coastal plain with low elevation, mostly flat (Mukherjee and 
Singh 2020).

Harris County, where the city of Houston is located, is 
the third-most populous county in the country. Out of all 
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block groups of Harris County, 30.5% of them have high 
population density. 70% of highly populated block groups 
are located within the FEMA 100-year and/or 500-year 
floodplain (Pulcinella et al. 2019). Numerous disastrous 
floods have occurred in this county in recorded history. Har-
ris County encounters a severe flooding incident every two 
years (Mukherjee and Singh 2020). The flood caused by 
Hurricane Harvey was the most devastating in recent his-
tory, resulted in a total of 36 deaths. In addition, 154,170 
homes and 300,000 vehicles were flooded during the Hur-
ricane Harvey flooding event. Further, neighborhoods with 
more poor residents, black residents, people with disabili-
ties, and young children faced comparatively higher flood 
risks during Hurricane Harvey (Chakraborty et al. 2019). 
Flores et al. (2023) highlighted that the future flood impact 
in Greater Houston (Harris County) could be catastrophic 
unless FEMA revise its risk maps by considering social 
equity. Therefore, due to its recent experience with major 
floods and revealed social disparities, Harris County serves 
as an ideal location for demonstrating our conceptual frame-
work and implementing our analytical strategy.

Data sources

Multiple datasets including remotely sensed data and cen-
sus data are used in this study. The sources of dataset, 
temporal resolution, spatial resolution, and data output are 
briefly demonstrated in Table 1. Three datasets are primar-
ily required to prepare the flood inventory map including 

Sentinel-1 SAR from ESA, flood fatality data from Godfroy 
and Jonkman (2017), and storm events data from NOAA.

The DEM data are needed to create elevation, slope, 
aspect, curvature, TWI, SPI, and drainage density layers. 
The DEM data is obtained from the 3DEP DEM dataset 
by USGS using the Google Earth Engine (GEE) platform 
and processed on ArcGIS Pro 2.8. The JRC Global Surface 
Water dataset by Pekel et al. (2016) is utilized to produce 
distance from the river layer, downloaded through the GEE 
platform, and processed on ArcGIS Pro 2.8. The OREGON-
STATE/PRISM/Norm91m dataset, a gridded climate dataset 
for the CONUS, spanning from 1991 to 2020 is downloaded 
from PRISM/Oregon state dataset for the precipitation layer. 
The soil texture layer is derived from the Open Land Map 
Soil Texture Class dataset by Hengl (2018) using GEE. 
Landsat 8 OLI/TIRS and NLCD datasets are downloaded 
from USGS to prepare the NDVI and LULC layers using 
the GEE platform. Finally, this study adopts the census data 
for 2018 collects ten variables from the Center for Disease 
Control and Prevention (CDC) at the census tract administra-
tive level and processes them on SPSS and ArcGIS Pro 2.8.

Methodology

This study adopts an interdisciplinary approach to produce 
FSM, SoVM, and FRM of Harris County. The methodology 
is visualized as a flowchart in Fig. 2. This methodology can 
be divided into three major sections: (i) flood susceptibility 

Fig. 1  Study area map (a) 
administrative map of Harris 
County (b) location of Har-
ris County in the context of 
CONUS
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assessment, (ii) social vulnerability assessment, and (iii) 
flood risk assessment. Each section is described below.

Flood susceptibility assessment

Flood inventory map In flood susceptibility analysis, the 
flood inventory map is the fundamental tool that consists of 
historical flood information of a particular region affected 

by flooding (Merz et al. 2007). It plays a vital role in esti-
mating the potentiality of future floods based on previously 
flooded locations and flood conditioning factors (Tehrany 
et al. 2015). Since the accuracy of flood susceptibility analy-
sis entirely depends on how precisely past flood information 
was recorded and used, this study takes meticulous measures 
to collect flood information from various sources. The most 
devastating flood, induced by Hurricane Harvey in August 

Table 1  Details of datasets used in this study

Dataset Data sources Temporal resolution Spatial resolution (m) Data Output

Sentinel-1 SAR ESA/Copernicus 2017 10 Flood inventory map
Flood fatality data Godfroy and Jonkman (2017) 2017 - Flood inventory map
Strom Events data NOAA 2017 - Flood inventory map
JRC Global Surface Water Pekel et al. (2016) 2020 30 Distance to river
3DEP DEM USGS - 10 Elevation, Slope, Aspect, Profile 

curvature, TWI, SPI, Drainage 
density

OREGONSTATE/PRISM/ 
Norm91m

PRISM/OREGON STATE 1991–2020 928 Precipitation

Open Land Map Soil Texture 
Class

Hengl (2018) 2018 250 Soil texture

Landsat 8 OLI/TIRS USGS 2017 30 NDVI
NLCD USGS 2016 30 LULC
Census data CDC/ATSDR 2018 Census Tracts SoVM

Fig. 2  Methodological framework of this study
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2017 in Harris County, is considered to generate this flood 
inventory map.

This study uses three different data sources to generate 
this flood inventory map. First, the Sentinel-1 Synthetic 
Aperture Radar (SAR) dataset is used to extract flood inun-
dated locations during Hurricane Harvey. The Sentinel-1 
SAR dataset is a widely preferred dataset for flood inunda-
tion mapping because of its reliability, cloud penetration 
capability, and fine resolution (10 m) (Joyce et al. 2009). In 
this process, spatial filtering is applied to remove the ‘salt 
and pepper noise’ present in SAR data for atmospheric cor-
rection. Next, a division band ratio algorithm is applied to 
pre-flood and post-flood images to extract inundated zones. 
Later, the Global Surface Water dataset by Pekel et al. (2016) 
is masked out from that extracted inundated zone to depict 
actual and more precise flooded areas. This whole process is 
conducted in the GEE platform using JavaScript API.

Second, the flood fatality data of Hurricane Harvey col-
lected from Godfroy and Jonkman (2017) is considered to 
ground truth flooded locations. Out of 500 inventory points, 
250 points are taken as flood points, with 37 flood points 
adopted from the flood fatality dataset and the remaining 213 
points being randomly taken from flooded areas extracted 
from Sentinel-1 SAR data. Similarly, 250 non-flood points 
are also taken randomly from non-flood regions of Harris 
County and used to prepare the training and testing datasets 
(Fig. 3). Third, the NOAA storm event dataset is used to 
confirm the location of all these flood points. Finally, these 
500 flood inventory points are split into training (70%) and 
testing (30%) datasets to train and test the RF model.

Flood Conditioning Factors The occurrence of natural haz-
ards such as floods, landslides, and cyclones is mainly deter-
mined by several causal factors. The factors that contribute 
directly or indirectly to the flood occurrence in a particular 
area are called flood conditioning factors. Several topo-
graphical, climatological, geological, environmental, and 
anthropogenic factors control flood occurrences (Sarkar and 
Mondal 2020). Before performing flood susceptibility analy-
sis, it is crucial to select relevant flood conditioning factors 
for a particular study area (Kia et al. 2012). So, after an in-
depth literature review (Das 2020; Kia et al. 2012; Rahmati 
et al. 2016; Samanta et al. 2018; Sarkar and Mondal 2020; 
Shahabi et al. 2020; Tehrany et al. 2015; Tehrany and Kumar 
2018), a total 12 relevant flood conditioning factors have 
been meticulously selected for this study. Below, a concise 
description of these factors is provided.

Elevation The elevation is widely considered as a critical 
topographic factor in flood susceptibility assessment, as low 
elevations and flat regions are more susceptible to flooding 
due to gravitational force directing the flow of surface water 
in relation to changes in elevation (Das 2020; Tehrany et al. 
2015). The elevation of the entire Harris County has a range 
between -7.33–98.99 m (Fig. 4a).

Slope The topographic slope influences the speed and 
direction of surface runoff, water accumulation process, 
and surface infiltration (Rahmati et al. 2016, 2020). Gener-
ally, low-lying with a gentle topographic slope region are 
flood susceptible areas (Kia et al. 2012). The slope of Harris 
County has a range between 0 to 40.14 degrees (Fig. 4b).

Fig. 3  Flood inventory map 
of Hurricane Harvey induced 
flooding in Harris County; 
white stars and black stars 
represent non-flood points and 
flood points respectively; red 
color represents the extracted 
flooded zone from Sentinel-1 
SAR dataset; and blue color 
represents rivers of Harris 
County
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Aspect The topographic aspect indicates the direction of 
a slope or land surface face and plays a significant role in 
flood susceptibility assessment as it influences precipitation 
patterns (Farhadi and Najafzadeh 2021). The aspect layer of 
Harris County has ten different faces (Fig. 4c).

Curvature Topographic curvature represents the physical 
attributes of a basin in terms of erosion and runoff pro-
cess (Andaryani et al. 2021). It affects the water budget 

of floodplains and can differentiate between areas where 
surface runoff diverges and converges (Islam et al. 2021). 
The curvature value of Harris County ranges from -22.99 to 
23.89 with a majority of the region exhibiting values close 
to zero (Fig. 4d). Typically, areas with zero curvature values 
are at higher risk for flooding (Shahabi et al. 2020).

TWI The TWI refers to the spatial distribution of wetness 
across a landscape that helps to understand the controls of 

Fig. 4  Maps of 12 flood conditioning factors. (a) elevation; (b) slope; (c) aspect; (d) profile curvature; (e) TWI; (f) SPI; (g) precipitation; (h) 
LULC; (i) distance to river; (j) NDVI; (k) drainage density; (l) soil texture
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the overland water flow as wetter areas are more likely to 
produce runoff (Ali et al. 2019; Samanta et al. 2018). Con-
sequently, a higher TWI value indicates a higher likelihood 
of flooding. The TWI of Harris County is calculated using 
Eq. 1.

where,  As is the specific catchment area (in  m2/m) and β 
is the slope (in radians). In Harris County, the TWI value 
ranges from -10.97 to 14.79 (Fig. 4e).

SPI The SPI helps to understand the dynamics of rivers and 
streams that are correlated with the erosive power of the 
overland flow, discharge rate, and soil wetness status of a 
basin (Tehrany and Kumar 2018). A higher SPI value repre-
sents a higher susceptibility to flooding (Seydi et al. 2022). 
The SPI is computed for the catchment area using Eq. 2.

Here,  As is the specific catchment area (in  m2/m) and 
β is the slope (in radians). The SPI value ranges from 0 to 
774.59 (Fig. 4f).

Precipitation Precipitation is considered as a crucial clima-
tological factor and a prime source of water flow during 
flooding (Rahmati et al. 2020). Heavy precipitation causes 
rivers to overflow, and consequently inundates the low-lying 
surrounding floodplain areas (Das 2020). The monthly 
mean precipitation of Harris County ranges from 99.81 to 
126.81 mm (Fig. 4g).

LULC The LULC is an important anthropogenic factor of 
flood and can impact the potentiality of flooding by affecting 
the infiltration process and surface runoff (Andaryani et al. 
2021). A region with low vegetation (urban land, or barren 
lands) is at a higher risk of flooding compared to densely 
vegetated regions (forests or grasslands) due to unhindered 
water flow (Kia et al. 2012). This layer of Harris County 
was categorized into seven broad classes including built-
up areas, barren lands, forestlands, grasslands, croplands, 
wetlands, and open water (Fig. 4h).

Distance to the rivers The distance to the river is a key factor 
in floods because floods generally occur near the riverbank 
and inundate the surrounding low-lying floodplain land, 
significantly influencing the extent and severity of floods 
(Farhadi and Najafzadeh 2021; Samanta et al. 2018). The 
value range of distance to river layers of Harris County is 
between 0 to 70.89 km (Fig. 4i).

NDVI NDVI is inversely correlated with flood occurrences; 
sparse vegetation is more susceptible to flooding due to easy 

(1)TWI = In
(

A
S
∕tan�

)

(2)SPI = As ∗ tan�

water flow, whereas dense vegetation in forestland impedes 
the water flow and reduces flood susceptibility (Tehrany 
et al. 2015). The NDVI value of Harris County ranges from 
-0.29 to 0.95 (Fig. 4j).

Drainage density Drainage density is defined as the total 
length of channel segments within a drainage basin per unit 
area of the basin (Das 2020). The likelihood of flooding 
increases with higher drainage density (Sarkar and Mondol 
2020). The drainage density of Harris County ranges from 
0 to 418.48 m/m2 (Fig. 4k).

Soil texture Soil texture is a prime geological factor that sig-
nificantly influences flooding, by controlling the amount of 
infiltration, surface runoff, and inundation process (Rahman 
et al. 2021; Rahmati et al. 2016). The soil types with slow 
infiltration ability are prone to flooding, causing a higher 
peak discharge and river flood. Most of Harris County is 
composed of ClLo and Lo soil texture (Fig. 4l).

Random Forest model The RF model developed by Breiman 
(2001) is a supervised ensemble algorithm that is widely 
used to efficiently solve classification, regression, cluster 
analysis, and anomaly detection problems (Géron 2022). 
RF offers several benefits including high predictive accu-
racy, the ability to identify significant features, the ability 
to reduce the chance of overfitting, the capability to handle 
large and high-dimensional data, and the ability to deal with 
missing values and outliers within the predictor variables, 
etc. (Amare et al. 2021; Elmahdy et al. 2022). The bootstrap 
aggregating (bagging) sampling method is used in the train-
ing process of RF models, where random subsets of data are 
selected with replacement (Géron 2022). During the training 
phase of the RF algorithm, multiple decision trees are con-
structed for bootstrapped samples. Each tree includes root 
nodes, child nodes, and leaf nodes. The final prediction is 
then determined by either majority voting (for classification 
problems) or by considering the mean (for regression prob-
lems) of the predictions gathered from the leaf nodes of all 
trees (Islam et al. 2021; Lee et al. 2017).

In Fig. 5, the flowchart represents the total training data-
set as D, which is later divided into multiple subsets (d1, 
d2, ….., dn) using a bootstrap sampling method. For each 
subset, one decision tree is constructed. Each decision tree 
provides individual prediction (P1, P2,……,Pn). Since flood 
susceptibility assessment is a classification problem, the 
overall prediction (P) is determined by the majority votes 
from the decision trees in the forest. In this flood suscep-
tibility assessment, the RF algorithm is trained using flood 
inventory points (as the target variable) and flood condition-
ing factors (as feature or predictor variables).

The entire RF classification process is conducted 
on Jupyter Notebook IDE using Python language. The 
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RandomForestClassifier function is imported from the 
SciKit Learn package to classify flood susceptibility. To do 
so, initially, the entire flood inventory dataset (500 inven-
tory points) is split into a 70:30 ratio using the train_test_
split function. Later, the only training set (70% of the total 
dataset) is fitted into the RF model. After hyper-parameter 
tuning, the best optimum parameters are found with n_esti-
mators = 700, criterion = gini, and max_features = log2. Fol-
lowing that, the contributions of various flood conditioning 
factors on flood occurrence are assessed using the feature_
importances_ function. Later, the probability of flood occur-
rence is estimated by generating a flood susceptibility index 
(FSI) for each pixel using the predict_proba function. The 
value of FSI ranges from 0 to 1, representing the gradual 
range of probabilities of flood occurrence. The FSI value of 
a pixel close to 0 indicates very low susceptibility, and close 
to 1 indicates very high susceptibility. Equal interval method 

is employed in ArcGIS Pro 2.8 to categorize FSI into five 
different classes, namely very low (0–0.2), low (0.2–0.4), 
moderate (0.4–0.6), high (0.6–0.8), and very high (0.8–1.0). 
Following that, the area percentage under each category of 
flood susceptibility is calculated and tabulated.

Social vulnerability assessment

This study adopts a widely recognized formula developed 
by Cutter et al. (2003) to map social vulnerability by uti-
lizing a very popular data dimension reduction technique 
known as PCA. To do so, this study initially selects ten 
variables to create a SoVI of Harris County at the cen-
sus tract level based on a comprehensive examination of 
the literature on SoVI assessment (Cutter et al. 2003; Dey 
et al. 2023; Rufat et al. 2015; Shao et al. 2020). These 

Fig. 5  The classification process 
of RF algorithm
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variables include population density, housing density, per-
centage of persons living below the poverty, unemploy-
ment rate, per capita income, percentage of persons aged 
65 or older, percentage of persons aged 17 or younger, 
percentage of disabled population, households with no 
vehicles, and percentages of racial minorities.

First, all the variables are standardized using Z-scores 
(Eq. 3),

where z is the normalized value, x is the value of each data 
variable, µ is the mean value of the variable, and σ is the 
standard deviation of the variable. After calculating the Z 
score, PCA is conducted in SPSS using varimax rotation 
(100 iterations). Later, three-factor components are selected 
based on eigenvalues (greater than 1.00) (Table 2). These 
factors are named based on their dominant variables, only 
those with factor loading values above 0.600 or below -0.600 
are considered for naming. The three dominant factors, 
namely poverty and inaccessibility, income and dependent 
populations, and population density explain the variance 
of 36.88%, 22.49%, and 16.39% of the total data, respec-
tively. Cardinality is assigned to each factor depending 
on their dominant variable’s contribution to overall social 
vulnerability.

In terms of quantifying social vulnerability, there is no 
established theory guiding the weighting of different fac-
tors in a SoVI. Most studies assume all constituent fac-
tors are equal in their contributions to the overall social 
vulnerability and thus assign equal weight to each factor 
(Rufat et al. 2015). The social vulnerability outcome on 
the other hand is sensitive to different weighting schemes 
(e.g., weighted vs. non-weighted) (Reckien 2018). Some 
studies use the percentage of variance explained to weight 
each selected constituent factor ( de Sherbinin and Bardy 

(3)z =
(x − μ)

σ

2015; Dey et al. 2023; Shao et al. 2020). The primary 
objective of mapping the spatial distribution of social 
vulnerability is to highlight places and areas that display 
the highest vulnerability across a region. The effort can 
then inform and guide policymakers to effectively and 
efficiently allocate resources to the places/areas where 
they are needed the most. Spatial variations illustrate the 
disparities of variables/factors across space as well as the 
extent to which the variable/factor varies. Using ratios 
of variance explained to the total variance explained by 
the selected factors to represent contributions to the over-
all social vulnerability outcome can amplify factors that 
display the most variances explained in a spatial context. 
Adopting this reasoning, weights in this study are deter-
mined by computing the ratio of the variance explained by 
each individual factor to the total variance explained by 
all selected component factors. Next, all these factors are 
summed up after being multiplied with the corresponding 
weight to create SoVI (Eq. 4).

After calculating SoVI scores for each census tract, they 
are joined with Harris County’s census tract shapefile using 
their unique FIPS code. The SoVI scores range from -1.52 
to 3.35. The scores are categorized into five different groups 
including very low (-1.52- -0.58), low (-0.59—-0.11), 
moderate (-0.12—0.35), high (0.36 -1.01), and very high 
(1.02–3.35) using natural breaks classification in ArcGIS 
Pro 2.8.. The final step involves preparing a choropleth map 
of social vulnerability based on the classified SoVI scores 
using a diverging color palette.

Flood risk assessment

The term risk comprises two major aspects: hazard suscep-
tibility and social vulnerability meaning the potentiality of 

(4)SoVI = 0.481F1 + 0.296F2 + 0.216F3

Table 2  PCA component summary of SoVI variables

Component Cardinality Name % Variance 
Explained

Dominant variables Factor loading Weight

F1  + Poverty and inaccessibility 36.885 Z_Poverty 0.626 0.481
Z_Unemployed 0.721
Z_Disability 0.792
Z_NOVehicle 0.759

F2  + Income and Dependents populations 22.491 Z_Income -0.726 0.296
Z_Age65 -0.789
Z_Age17 0.761
Z_Minority 0.702

F3  + Population’s density 16.393 Z_POPDensity 0.930 0.216
Z_Housing_Density 0.968
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human life and infrastructure damage when exposed to haz-
ards (Merz et al. 2007; Vojtek and Vojteková 2016). In this 
study, the FRM of Harris County is created by combining 
FSM and SoVM. To ensure the consistency and alignment 
of the value range between FRM and SoVM, initially, SoVI 
is normalized into the 0–1 range by applying the Min–Max 
normalization formula. The Min–Max normalization for-
mula is given below in Eq. 5.

where x’ is the normalized value, x is the value of SoVI of 
each census tract, max(x) is the maximum value of SoVI, 
and min(x) is the minimum value of SoVI among all census 
tracts.

Later the polygon feature of the normalized SoVI is con-
verted into a raster file to ensure the same spatial resolution 
and geographic coordinate system as the FSM. Normalized 
SoVM and FSM are then multiplied to create a flood risk 
index based on the following formula (Eq. 6).

where, FRI represents the flood risk index, SoVI social vul-
nerability index, and FSI flood susceptibility index. Hence, 
if the value for a specific region is high in both FSM and 
SoVM, the corresponding value of FRM would be high as 
well. The FRI scores range from 0 to 0.79, and are classified 
into five major categories including very low (0–0.07), low 
(0.08–0.12), moderate (0.13–0.18), high (0.19–0.27), and 
very high (0.28–0.79), using natural breaks classification 
in ArcGIS Pro 2.8. Natural breaks classification is used in 
classifying both SoVI and FRI because the values of SoVI 

(5)x� =
x −min(x)

max(x) −min(x)

(6)FRI = SoVI × FSI

and FRI are not evenly distributed and contain big leaps. 
Natural breaks classification is the most suitable when data 
value is not evenly distributed and there are big leaps in the 
data (Ayalew and Yamagishi 2005). Later the percentage of 
areas for each category of flood risk is quantified.

Results

Contributions of flood conditioning factors 
to flooding in Harris County

The pie chart (Fig. 6) illustrates the contribution of different 
flood conditioning factors (in percentage) to flooding in the 
study area. The findings reveal that elevation has the high-
est impact on flooding, accounting for a 15% contribution. 
Furthermore, distance to river, precipitation, and LULC are 
also significant factors with contributions of 13%, 12%, and 
12%, respectively.

Other factors including slope, NDVI, drainage density, 
aspect, curvature, TWI, SPI, and soil texture also contribute 
to the flooding in Harris County, although to a lesser extent.

To further validate this analysis, this study compared the 
result of the RF model with that of the XGBoost model. 
XGBoost, a high-performing ML model, showed a highly 
similar pattern achieved by the RF model in ranking the 
impacts of flood conditioning factors in Romania (Abedi 
et al. 2022). In this study, the XGBoost identified elevation, 
distance to river, and LULC as dominant factors of flood 
occurrence which are very similar to what the RF model 
revealed (see Supplementary Materials).

Fig. 6  Impact of flood condi-
tioning factors on flood occur-
rence in Harris County
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Flood susceptibility map of Harris County

Figure 7 shows the distribution of different flood susceptible 
zones throughout Harris County. According to the suscepti-
bility analysis, about 9.06% (388.01km2) of Harris County 
is very highly susceptible to flooding, while 17.83% (763.55 
 km2) is classified as highly susceptible to flooding. High and 
very high flood susceptible areas are mainly located in the 
eastern part. Specifically, most of them are near open water 
bodies such as Buffalo Bayou River, Scott Bay, Upper San 
Jacinto Bay, Bear Lake, Mud Lake, and Taylor Lake, and 
some croplands in Crosby and Huffman region (located at 
northeastern region of Harris County) and Hockley regions 
(located at the western side of Harris County) (Fig. 7).

The analysis also reveals that 22.81% (975.81km2) of 
Harris County has a moderate susceptibility, while 17.79% 
(761.76km2) and 32.52% (1392.44km2) fall into the low 
and very low flood susceptibility categories, respectively. 
The moderate flood-susceptible zone encompasses most of 
Pasadena, South Houston, and Clear City Lake area, whereas 
most of Harris County such as Bellaire, Hedwig Village, 
Jersey Village, Louetta, and Aldine areas were classified as 
low or very low flood susceptibility zones.

Social vulnerability map of Harris County

Table 3 presents the results of the social vulnerability anal-
ysis including the classification of social vulnerability in 
Harris County, along with the number of census tracts, their 
estimated area, percentage of area, total population, and per-
centage of population associated with each category. Table 3 
indicates that 37 census tracts are classified as very highly 
socially vulnerable, accounting for 1.45% (64.15km2) of the 
total area. These census tracts consist of 3.52% of the total 
population. Furthermore, an area of 456.51km2, which rep-
resents 10.34% of the total area, is classified as having a high 
social vulnerability, consisting of 180 census tracts. A sig-
nificant percentage of the population (19.53%) lives in these 
census tracts. As Fig. 8 shows, the areas in Harris County 
that are considered to be very high and high social vulner-
ability tend to be concentrated in the downtown areas, such 
as northeast Houston, Greater Fifth Ward, and Frenchtown, 
as well as some parts of southeast Houston and Chinatown.

A total of 225 census tracts, covering 27.35% 
(1207.91km2) of the total area, are identified as having 
moderate social vulnerability. This category also includes 
30.59% of the total population. Moreover, 31.99% of the 
total area, estimated as 1412.98km2 is classified as having a 

Fig. 7  Flood susceptibility map 
of Harris County

Table 3  Results of social 
vulnerability analysis

Vulnerability 
categories

No. of Cen-
sus tract

Estimated 
Area  (km2)

% Of Area Total Population % Of Population

Very low 150 1274.89 28.87 875,234 19.01
Low 192 1412.98 31.99 1,258,022 27.33
Moderate 225 1207.91 27.35 1,407,999 30.59
High 180 456.51 10.34 899,161 19.53
Very high 37 64.15 1.45 162,107 3.52
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low social vulnerability, where 27.33% of the total popula-
tion resides. Among all census tracts, 150 of them fall into 
the very low social vulnerability category, covering 28.87% 
(1274.89  km2) of the total area. The population in these cen-
sus tracts is 875,234, which makes up 19.01% of the total 
population. Overall, areas outside the downtown area are 
characterized by moderate, low, and very low social vulner-
ability, as shown in Fig. 8. Specifically, most of the census 
tracts close to Bellaire and Hedwig Village fall into this very 
low socially vulnerable category.

Flood risk map of Harris County

Figure 9 demonstrates the spatial distribution of flood risk 
zones throughout Harris County. Regions close to Buffalo 

Bayou River are at very high risk of flooding. Specifically, 
the areas close to Galena Park, Denver Harbor, Greater Fifth 
Ward, Second Ward, and some parts of northern downtown 
Houston are categorized as being at high or very high risk of 
flooding. Additionally, a few regions in Bay Town are also 
classified as high or very high flood risk zones. The flood 
risk analysis reveals that 5.59% (239.52km2) of the entire 
area is at very high risk of flooding and 12.25% (524.59km2) 
of the total area is at high risk of flooding in Harris County.

On the other hand, 945.34  km2 (equivalent to 22.07% of 
the total area), 1220.92  km2 (equivalent to 28.51% of the 
total area), and 1352.11  km2 (equivalent to 31.57% of the 
total area) of Harris County are categorized as moderate, 
low, and very low flood risk zones, respectively.

Fig. 8  Social vulnerability map 
of Harris County

Fig. 9  Flood risk map of Harris 
County
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Validation of the RF model

The ROC-AUC curve is a widely used tool in ML to evalu-
ate prediction model accuracy due to its easy-to-understand 
and clear depiction of accuracy (Youssef et al. 2022). In this 
study, the performance of the RF model is evaluated by the 
ROC-AUC curve. A maximum AUC value (close to 1) indi-
cates the very good prediction capability of an ML model. 
Figure 10 shows that the AUC-ROC value for the generated 
RF model is 0.92, indicating very good prediction accuracy.

Moreover, the RF model achieves an overall accuracy of 
0.83, a precision score of 0.82, a recall score of 0.84, and an 
F1 score of 0.83 on the test dataset.

Discussion

Effective flood management necessitates continuous and rig-
orous flood risk assessment, monitoring, and forecasting. 
An FRM generated from comprehensive flood risk assess-
ment can be used as an effective and powerful tool in flood 
risk management. This study combines two approaches: an 
FSM based on the physical aspects of flooding and an SoVM 
that is generated from social factors. By integrating these 
two maps, the study aims to create a comprehensive FRM 
for Harris County to achieve better flood risk management. 
This study identified major contributing factors of flooding 
in Harris County and the spatial distribution of flood risk 
zones. Most importantly, this study reveals high flood risk 
regions that are overlooked by FEMA’s 100-year floodplain 
map.

In the United States, the FEMA 100-year floodplain, also 
known as Special Flood Hazard Areas (SFHAs), denotes 
areas with a 1% annual chance of being flooded, guiding 

federal flood insurance and mitigation (Highfield et al. 
2013). It is a key indicator for determining flood risk and 
flood insurance in the U.S., and helps local decision-makers 
with safety assessments for further development and build-
ing infrastructures (Highfield et al. 2013). The boundary 
of SFHAs is usually prepared by calculating the 100-year 
return periods of flood water discharge by analyzing his-
torical gauge station data (e.g. stream flow discharge and 
runoff) on a hydraulic model (Vojtek and Vojteková 2016). 
Next, base flood elevation (the water surface elevations of 
the 1% annual chance flood) is generated and overlaid onto 
topographic data such as DEM to delineate a 100-year flood 
plain (Crowell et al. 2010).

One major limitation of the FEMA 100-year floodplain is 
its lack of comprehensiveness, resulting in inconsistencies 
with real flood damages and excluding areas with substan-
tial populations vulnerable to flooding (Huang and Wang 
2020). The probable reason behind this is the FEMA flood 
risk assessment has been conducted on a large geographic 
scale and modeling which sometimes overlooks populations 
at risk (Flores et al. 2023; Highfield et al. 2013). In addition, 
FEMA 100-year flood map only focuses on physical factors 
(topography, rainfall, and river discharge) but disregards 
social factors. Political factors can also affect the remapping 
process, resulting in less effective responses from individu-
als and groups, according to studies. This emphasizes the 
need for unbiased and thorough flood risk mapping to reduce 
flooding impacts. (Pralle 2019). Furthermore, FEMA’s 100-
year floodplain map is binary, indicating whether a region 
is in or beyond the floodplain (Fig. 1), which might have 
substantial behavioral ramifications. Residents within 
FEMA’s floodplain are more likely to buy flood insurance 
voluntarily (Shao et al. 2017), while those outsiders might 
overlook flood consequences (Shao et al. 2019). Research 

Fig. 10  ROC-AUC curve of RF 
model
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demonstrates that including social vulnerability in flood con-
trol project assessment and planning can reduce the negative 
effects of floods on social stability (Greene et al. 2015).

A comprehensive study should include multiple compo-
nents that strengthen its findings and boost its credibility to 
aid long-term planning and policymaking. By incorporating 
a wide array of influential elements, we were able to develop 
a more comprehensive assessment and FRM, categorizing 
flood risk into five distinct levels, spanning from a very low 
to very high levels (Fig. 9). In addition, FRM is a more 
dependable tool for assessing flood risk because it consid-
ers both physical and social factors. It considers flood risk 
as a product of both hazards (the physical effects of actual 
flooding) and vulnerability (potentially exposed populations 
and social infrastructure) (Vojtek and Vojteková 2016). Fur-
thermore, upon comparing the two maps, it becomes evident 
that there are areas of high susceptibility, in the vicinity of 
Hockley, Huffman, and Crosby regions, that are overlapped 
with the FEMA 100-year floodplain (Fig. 11a). The con-
trast also underscores FEMA’s tendency to underestimate 
the level of risk in the vicinity of Bays and overestimate the 
risk level near Buffalo Bayou River, a characteristic that is 
more accurately portrayed by the FRM (Fig. 11b).

Table 4 displays regions that have been categorized as 
very high or high in terms of FSM and FRM but are situated 
beyond the FEMA 100-year floodplain boundary. The table 
shows that the FEMA 100-year floodplain map underesti-
mated 62.6% of the very highly susceptible areas and 77.9% 
of the highly susceptible areas in FSM. In addition, 76.7% 
of the regions classified as very high risk and 81.8% of the 
areas classified as highly risky in FRM are located outside 
the FEMA 100-year floodplain map. This finding is highly 
pertinent to the research conducted by Flores et al. (2023), 
which revealed that around 1 million individuals, accounting 
for 16% of the overall population, reside in areas of Greater 
Houston that are highly susceptible to flooding. However, 

these areas were not included in the FEMA 100-year flood-
plain map.

The RF model also demonstrates that Harris County is 
prone to flooding near Galveston and Trinity Bay, and it 
identifies many contributing factors. Flood susceptibility is 
significantly affected by elevation, river proximity, precipita-
tion, and LULC (Fig. 6). Numerous flood risk management 
studies have confirmed the significance of those factors in 
flood susceptibility (Rahmati et al. 2016; Lee et al. 2017). 
Figure 4a depicts how gravitational forces lead water to flow 
towards Galveston and Trinity Bay as elevation decreases. 
The high precipitation in these bay areas (Fig. 4g) and prox-
imity to river channels (Fig. 4i) increase the risk of flooding. 
Heavy precipitation combined with proximity to a river or 
shore can cause compound flooding, which is often more 
severe than individual impacts (Bevacqua et al. 2019). This 
underscores the necessity of understanding the connections 
between flood risk management strategy components. The 
built-up land in these areas, with impermeable surfaces that 
limit water infiltration and accelerate surface runoff, makes 
them more vulnerable to flooding (Fig. 4h). Thus, Harris 
County’s Galveston and Trinity Bay regions are especially 
prone to flooding due to their low elevation, proximity to 
rivers, high precipitation, and urbanization.

Note that high flood susceptibility does not always imply 
high flood risk. The interaction of flood susceptibility and 
social vulnerability generates flood risk. Hockley in western 

Fig. 11  Comparison between 
FEMA 100-year floodplain map 
with FSM and FRM (a) Under-
estimated flood susceptible 
areas by FEMA 100-year flood-
plain map (b) Underestimated 
flood risk areas by FEMA 100-
year floodplain map; Red color 
represents underestimated very 
high categorized zones, Orange 
color represents underestimated 
high categorized zones

Table 4  Percentage of underestimated flood risk areas by FEMA 100-
year floodplain map

Risk level Underestimated 
area in FSM 
 (km2)

% Of 
area in 
FSM

Underestimated 
areas in FRM 
 (km2)

% Of 
area in 
FRM

Very high 242.8 62.6 183.3 76.7
High 594.7 77.9 428.6 81.8
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Harris County is very highly susceptible to floods (Fig. 7), 
but its low flood risk (Fig. 9) is linked to low social vul-
nerability (Fig. 8), which is largely attributable to a small 
population. Hoffman has high flood susceptibility (Fig. 7), 
but low flood risk (Fig. 9). Our findings revealed that some 
places might be significantly vulnerable and resilient at the 
same time due to some other factors and such findings are 
consistent with others (Haque et al. 2022; Shah et al. 2018) 
Despite significant socioeconomic vulnerability (Fig. 8), 
the areas surrounding northeastern Houston and Chinatown 
pose negligible flood risk (Fig. 9). Figures 7 and 8 illus-
trate that regions near the Buffalo Bayou riverbank are both 
flood-susceptible and socially vulnerable, resulting in high 
flood-risk zones (Fig. 9).

In summary, this study aims to complement the FEMA 
100-year floodplain map for better flood risk management. 
The utilization of ML algorithms in the creation of flood sus-
ceptibility maps signifies a notable progression in the field 
of disaster management, providing enhanced effectiveness 
and accuracy in forecasting regions susceptible to flood-
ing. Through the utilization of data from many sources, ML 
algorithms can effectively manage the intricate connections 
between flood conditioning factors and flood occurrences 
and determine the most influential aspects. The combina-
tion of social vulnerability and flood susceptibility within a 
unified framework for flood risk assessment provides a more 
holistic comprehension of flood hazards, encompassing both 
the probability of flooding occurrences and the possible con-
sequences for impacted areas. The present methodology for 
creating an FRM can be extended to encompass the gen-
eration of real-time and high-resolution FRM for additional 
cities globally that are susceptible to flooding. This can be 
achieved by using current census data and pertinent data that 
encompass a range of flood conditioning factors. Further-
more, this methodology also facilitates the identification of 
the key elements that contribute to flood events, as well as 
the delineation of flood-prone areas as an outcome. The uti-
lization of integrated assessment can facilitate the develop-
ment of focused and fair policy interventions that prioritize 
the distribution of resources to the most susceptible people, 
thereby enhancing the overall resilience of the community. 
This research offers significant insights into the communica-
tion of flood risks and the development of sustainable solu-
tions for long-term mitigation.

Conclusion

A comprehensive flood risk assessment is vital for sustain-
able urban development. In this study, we use advanced ML 
techniques, specifically the RF algorithm, to construct an 
FSM and integrate it with a SoVM to produce a compre-
hensive FRM for Harris County. The analysis identifies key 

factors like elevation, river proximity, precipitation, and 
LULC as major flood drivers. This study also revealed that 
almost 18% of Harris County is at very high or high flood 
risk and most of these regions are overlooked by the FEMA 
100-year floodplain map. The comprehensiveness of our 
FRM offers a deeper insight into flood risks than FEMA’s 
100-year floodplain map and can guide disaster management 
efforts more effectively.

Nonetheless, this study does have certain limitations that 
warrant consideration in future research. These limitations 
include a lack of validation for the FRM and the arbitrary 
decisions on the selection and weighting of social vulner-
ability variables due to the fact that no consensus exists. 
Future research should validate assessments with histori-
cal data, explore different ML algorithms, and involve local 
stakeholders for more context-specific approaches. The 
study’s focus on Harris County also limits its geographic 
scope, suggesting a need for future research on larger areas, 
like the Southeastern US, for broader understanding. Despite 
these limitations, the study underscores the value of combin-
ing flood susceptibility and social vulnerability in flood risk 
management and urban planning.
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